akdak

المقالات

القسم العام

Euler-Lagrange Differential Equation

301

Arfken, G

Euler-Lagrange Differential Equation

 The Euler-Lagrange differential equation is the fundamental equation of calculus of variations. It states that if J is defined by an integral of the form

 J=intf(t،y،y^.)dt،

(1)

where

 y^.=(dy)/(dt)،

(2)

then J has a stationary value if the Euler-Lagrange differential equation

 (partialf)/(partialy)-d/(dt)((partialf)/(partialy^.))=0

(3)

is satisfied.

If time-derivative notation y^. is replaced instead by space-derivative notation y_x، the equation becomes

 (partialf)/(partialy)-d/(dx)(partialf)/(partialy_x)=0.

(4)

The Euler-Lagrange differential equation is implemented as EulerEquations[f، u[x]، x] in the Wolfram Languagepackage VariationalMethods` .

In many physical problems، f_x (the partial derivative of f with respect to x) turns out to be 0، in which case a manipulation of the Euler-Lagrange differential equation reduces to the greatly simplified and partially integrated form known as the Beltrami identity،

 f-y_x(partialf)/(partialy_x)=C.

(5)

For three independent variables (Arfken 1985، pp. 924-944)، the equation generalizes to

 (partialf)/(partialu)-partial/(partialx)(partialf)/(partialu_x)-partial/(partialy)(partialf)/(partialu_y)-partial/(partialz)(partialf)/(partialu_z)=0.

(6)

Problems in the calculus of variations often can be solved by solution of the appropriate Euler-Lagrange equation.

To derive the Euler-Lagrange differential equation، examine

deltaJ = deltaintL(q،q^.،t)dt

(7)

= int((partialL)/(partialq)deltaq+(partialL)/(partialq^.)deltaq^.)dt

(8)

= int[(partialL)/(partialq)deltaq+(partialL)/(partialq^.)(d(deltaq))/(dt)]dt،

(9)

since deltaq^.=d(deltaq)/dt. Now، integrate the second term by parts using

u = (partialL)/(partialq^.) dv

(10)

= d(deltaq)

(11)

du = d/(dt)((partialL)/(partialq^.))dt v=deltaq،

(12)

so

 int(partialL)/(partialq^.)(d(deltaq))/(dt)dt=int(partialL)/(partialq^.)d(deltaq)=[(partialL)/(partialq^.)deltaq]_(t_1)^(t_2)-int_(t_1)^(t_2)(d/(dt)(partialL)/(partialq^.)dt)deltaq.

(13)

Combining (◇) and (◇) then gives

 deltaJ=[(partialL)/(partialq^.)deltaq]_(t_1)^(t_2)+int_(t_1)^(t_2)((partialL)/(partialq)-d/(dt)(partialL)/(partialq^.))deltaqdt.

(14)

But we are varying the path only، not the endpoints، so deltaq(t_1)=deltaq(t_2)=0 and (14) becomes

 deltaJ=int_(t_1)^(t_2)((partialL)/(partialq)-d/(dt)(partialL)/(partialq^.))deltaqdt.

(15)

We are finding the stationary values such that deltaJ=0. These must vanish for any small change deltaq، which gives from (15)،

 (partialL)/(partialq)-d/(dt)((partialL)/(partialq^.))=0.

(16)

This is the Euler-Lagrange differential equation.

The variation in J can also be written in terms of the parameter kappa as

deltaJ = int[f(x،y+kappav،y^.+kappav^.)-f(x،y،y^.)]dt

(17)

= kappaI_1+1/2kappa^2I_2+1/6kappa^3I_3+1/(24)kappa^4I_4+...،

(18)

where

v = deltay

(19)

v^. = deltay^.

(20)

and the first، second، etc.، variations are

I_1 = int(vf_y+v^.f_(y^.))dt

(21)

I_2 = int(v^2f_(yy)+2vv^.f_(yy^.)+v^.^2f_(y^.y^.))dt

(22)

I_3 = int(v^3f_(yyy)+3v^2v^.f_(yyy^.)+3vv^.^2f_(yy^.y^.)+v^.^3f_(y^.y^.y^.))dt

(23)

I_4 = int(v^4f_(yyyy)+4v^3v^.f_(yyyy^.)+6v^2v^.^2f_(yyy^.y^.)+4vv^.^3f_(yy^.y^.y^.)+v^.^4f_(y^.y^.y^.y^.))dt.

(24)

The second variation can be re-expressed using

 d/(dt)(v^2lambda)=v^2lambda^.+2vv^.lambda،

(25)

so

 I_2+[v^2lambda]_2^1=int_1^2[v^2(f_(yy)+lambda^.)+2vv^.(f_(yy^.)+lambda)+v^.^2f_(y^.y^.)]dt.

(26)

But

 [v^2lambda]_2^1=0.

(27)

Now choose lambda such that

 f_(y^.y^.)(f_(yy)+lambda^.)=(f_(yy^.)+lambda)^2

(28)

and z such that

 f_(yy^.)+lambda=-(f_(yy^.))/z(dz)/(dt)

(29)

so that z satisfies

 f_(y^.y^.)z^..+f^._(y^.y^.)z^.-(f_(yy)-f^._(yy^.))z=0.

(30)

It then follows that

I_2 = intf_(y^.y^.)(v^.+(f_(yy^.)+lambda)/(f_(y^.y^.))v)^2dt

(31)

= intf_(y^.y^.)(v^.-v/z(dz)/(dt))^2dt.

(32

 


REFERENCES:

Arfken، G. Mathematical Methods for Physicists، 3rd ed. Orlando، FL: Academic Press، 1985.

Forsyth، A. R. Calculus of Variations. New York: Dover، pp. 17-20 and 29، 1960.

Goldstein، H. Classical Mechanics، 2nd ed. Reading، MA: Addison-Wesley، p. 44، 1980.

Lanczos، C. The Variational Principles of Mechanics، 4th ed. New York: Dover، pp. 53 and 61، 1986.

Morse، P. M. and Feshbach، H. "The Variational Integral and the Euler Equations." §3.1 in Methods of Theoretical Physics، Part I.New York: McGraw-Hill، pp. 276-280، 1953.